

Bedienungsanleitung für 2(3)-Phasen Schrittmotorendstufe

smdx85

Kühlkörper optional

Stand: 47/2010 Änderungen vorbehalten

Produktmerkmale

für alle gängigen 2-Phasen und 3-Phasen Schrittmotoren, vorzugsweise 60...90er Baugröße

2 Phasen:

8-Litzentechnik, Wicklungen parallel oder seriell

3 Phasen:

3-Litzentechnik, Wicklungen in Dreieckschaltung

Endstufe bipolar, gechoppt, geräusch- und verlustarm

nur eine Versorgungsspannung notwendig

Stromeinstellung über HEX-Schalter

Schrittauflösung pro Umdrehung:

2-Phasen: 200, 400, 800, 1600, 500, 1000 3-Phasen: 400, 500, 1000, 2000

hohe Drehmomentkonstanz von Schritt zu Schritt

Unterspannungserkennung und Abschaltung der Endstufe

Schrittfrequenz bis 150 kHz

automatische Stromabsenkung zuschaltbar

Übertemperaturschutz bei 70 Grad, Anzeige mit LED

Aktive Ballast-Schaltung bei Überspannung

Motorkurzschlussschutz, Anzeige mit LED

Eingänge: Optokoppler

Puls, Richtung, Tor, Off, Eilgang

Ausgänge: Optokoppler

Bereitschaft, Zerophase(Nullpunkt)

LED-Zustandsanzeigen

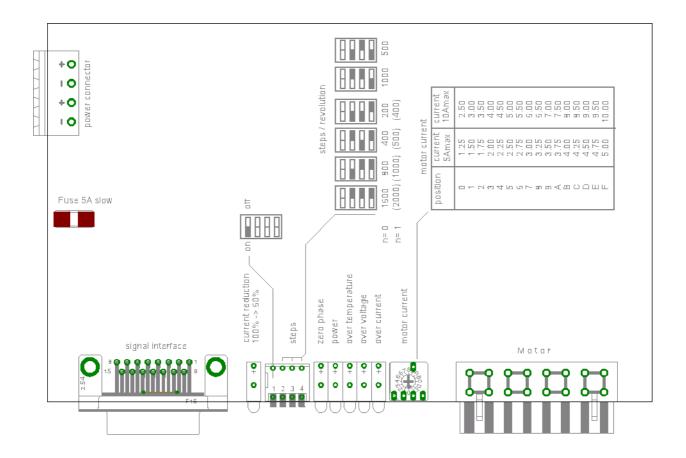
alle Anschlüsse mit lösbaren Steckverbinder

kompaktes Gehäuseformat oder Open Frame Bauform

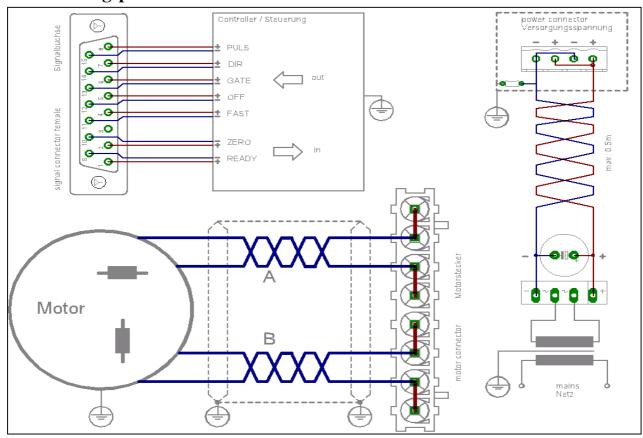
Varianten / Bestellschlüssel

smd285-xx smd385-xx	2-Phasen Leistungsteil 3-Phasen Leistungsteil
-0x	24V Signalinterface
-1x	5V Signalinterface
-x0	80V 5A
-x1	80V 10A
-x1 -x2 -x3	130V 5A 130V 10A

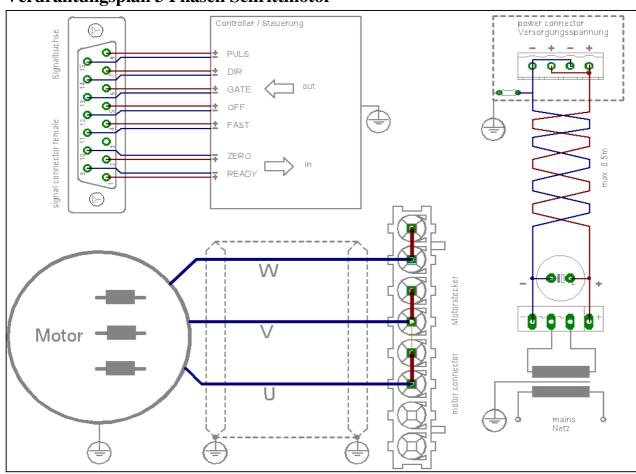
Zubehör (getrennt lieferbar)


CS.x85 Steckersatz für Interface: Versorgungsspannung, Motor und Signale

HS.x85 Kühlkörper (ab 6A Motorphasenstrom empfohlen)


DRC.x85 Halteklammer für Gerätemontage auf DIN Schiene ("Hutschienenmontage")

DOKU DIN-A5 gebundene Dokumentation.


Anordnung der Bedienelemente

Verdrahtungsplan 2 Phasen Schrittmotor

Verdrahtungsplan 3 Phasen Schrittmotor

4

Signalbeschreibung

PULS:

Mit Begin des aktiven Signals wird ein Schritt ausgeführt. Das Leistungsteil reagiert nur auf Signalflanken. Bei aktivierter Stromabsenkung (Schalter "Stromabsenkung" on) und Pulspausen länger als ca. 100ms wird der Motorstrom entsprechend abgesenkt.

Die Stromabsenkung wirkt nicht, wenn das Pulssignal statisch aktiv bleibt.

DIR: (direction, Richtung)

Das Richtungssignal bestimmt den Drehsinn des Motors. Durch Drehen einer Motorphase kann die logische Zuordnung invertiert werden

GATE: (Tor)

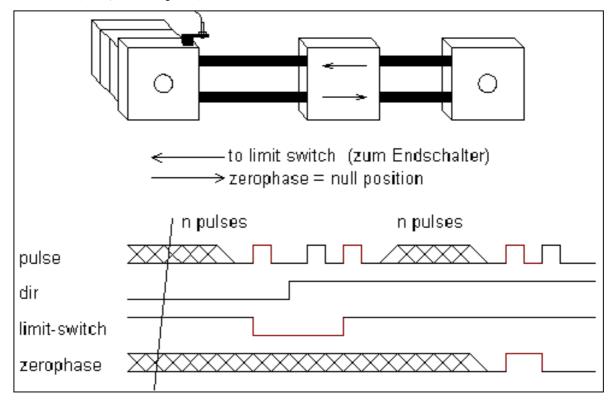
Ist der Eingang TOR bestromt, werden alle Pulse von der Endstufe ignoriert. Damit ist es möglich, mehrere Leistungsteile an einer Pulsquelle zu betreiben.

OFF / RESET: (Endstufe aus)

Mit Off kann die Endstufe stromlos geschalten werden. Der Schrittzähler bleibt dabei erhalten.

OFF/RESET (Fehler löschen)

Wechsel vom Fehler- in den Betriebszustand. Im Störfall geht das Leistungsteil in den Fehlerzustand über. Ursache hierfür sind zB. zu große Motorströme (Kurzschluss) oder Übertemperatur. Das Leistungsteil schaltet ab, die entsprechende LED zeigt diesen Zustand an, der Bereitschaftsausgang wird stromlos. Mit der Bestromung des OFF-Eingangs wird dieser Zustand aufgehoben. Die Rotorstellung ist undefiniert. Erst durch Wegnahme des OFF/RESET-Signals können weitere Pulse durchgeschaltet werden.


Während des aktiven RESET-Signals ist der Motor stromlos geschalten

READY: (Bereitschaft)

Dieser Ausgang ist bei ordnungsgemäßer Funktion stromführend. Nachfolgende Störungen öffnen den Bereitschaftsausgang: Überstrom, Übertemperatur Dieser Zustand bleibt gespeichert und kann nur mittels des OFF/RESET-Eingangs oder durch erneutes Einschalten des Leistungsteils behoben werden.

Das Leistungsteil meldet erst dann Bereitschaft, wenn die Versorgung für ca. 200ms stabil ansteht.

ZEROPHASE: (Null-, Referenzpunkt)

Der Ausgang ZEROPHASE kann zum exakten und reproduzierbarem Auffinden des Nullpunktes herangezogen werden. Zunächst wird vorsichtig auf den Endschalter gefahren, dann die Drehrichtung gewechselt und gefahren, bis der ZEROPHASE Ausgang schaltet. Dabei muss sichergestellt sein, dass die Schalthysterese des Endschalters außerhalb des ZEROPHASE-Signales zu liegen kommt. (Endschalter justieren)

Je nach eingestellter Schrittauflösung wird ZEROPHASE unter Berücksichtigung des Richtungssignals jedes Vielfache von n Pulsen gesetzt wie nachfolgende Tabelle zeigt.

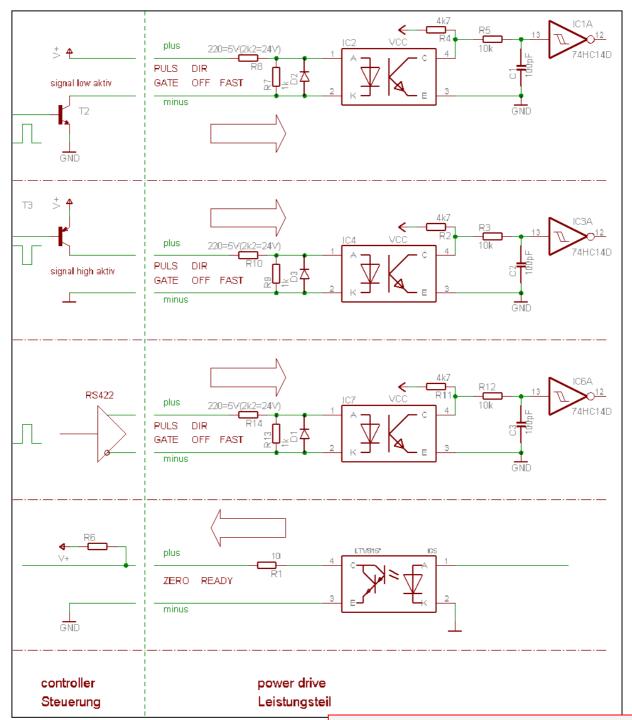
Schritte/Umdr.:	ZEROPHASE nach Anzahl Pulse
200	4
400	8
800	16
1600	32
500	10
1000	20

FAST: (Eilgang)

Mit dem Eingang FAST kann die Schrittauflösung halbiert werden. Somit ist es möglich, mit dem gleichen Frequenzprofil die doppelte Drehzahl zu fahren.

Wirkung nur bei 1600, 1000, 400 Schritte/Umdrehung Umschaltung nur bei geradzahligen Positionen 2,4,6,...

Motoranschlüsse:


Die Motoren werden generell im Bipolarbetrieb angesteuert. Das bedeutet, dass die Motorwicklungen ohne Spannungsverlust direkt mit der Betriebsspannung angesteuert werden. Diese Ansteuerung resultiert bei gegebener Motorspannung in einer größtmöglichen Dynamik des Antriebes. Achtlitzige Motoren haben pro Wicklung A und B jeweils ein Wicklungspaar. Diese können parallel oder in Serie geschalten werden. Die Parallelschaltung ist bei höheren Drehzahlen vorteilhaft. Dagegen verwendet man die Serienschaltung wenn man mit geringem Motorstrom dennoch ein hohes Drehmoment erreichen will.

Durch Verpolen einer Phase, zB. Phase W1 kann die Drehrichtung gegenüber der logische Zuordnung von dem Richtungssignal invertiert werden.

Während dem Betrieb darf unter keinen Umständen die Motorleitung getrennt werden. Induktionsspannungen können zur Zerstörung der Endstufe führen. Deshalb ist auf sichere Kontaktierung der Motorleitungen zu achten

6

Interface:

Das Signalinterface ist vollkommen mittels Optokoppler galvanisch getrennt. Zur flexiblen Ansteuerung sind jeweils beide Optokopplersignale (plus, minus) herausgeführt. So ist es einfach möglich, die Endstufe mit High- oder Lowaktiven Signalen oder mit RS422 Signaltreibern anzusteuern.

Niemals ein Leistungsteil für 5V-Signalinterface mit 24V Signalpegeln ansteuern

Schrittauflösung

Mit dem DIP-Schalter kann die Anzahl der Schritte pro Motorumdrehung eingestellt werden.

! nur im ausgeschalteten Zustand

Beim Standardmotor mit 50-Polpaaren ergeben sich also folgende Schrittauflösungen pro Umdrehung.

2-Phasen: 200, 400, 800, 1600, 500, 1000 3-Phasen: 400, 500, 1000, 2000

Laufverhalten:

Resonanzverhalten

Das Resonanzverhalten und somit die Laufkultur des Schrittmotors wird mit zunehmender Schrittauflösung positiv beeinflusst. Nachfolgende Werte sollen dies verdeutlichen, unter der Annahme, dass wir das Resonanzverhalten für Vollschritt als 100% setzen.

Betrieb: Resonanzverhalten

Vollschritt 100% Halbschritt 29% Viertelschritt 8%

Stromeinstellung

Grundsätzlich sollte nur soviel Strom wie notwendig eingestellt werden, auch, wenn der Nennstrom des Motors höher liegt. Erhöhte Motorströme bringen keine antriebstechnische Verbesserungen, sondern resultieren nur in einer zusätzlichen Verlustleistung. Insbesondere bei Mikroschritt nehmen die Schrittwinkelfehler zu, da der Motor über dem Nennstrom bereits magnetische Sättigungseffekte zeigen kann.

Bei höheren Schrittfrequenzen kann der eingestellte Strom bedingt durch die Motorinduktivität unter Umständen nicht mehr eingeprägt werden. Drehmoment verluste sind die Folge.(siehe Motorkennlinie der Hersteller)

Stromeinstellung 2 Phasen Schrittmotor

Der Motorstrom wird mit dem HEX-Schalter eingestellt. Im Bild "Anordnung der Bedienelemente" auf Seite 2 ist die Stufung ersichtlich. Die Stromwerte in der Tabelle geben dabei den Motorstrom an. Dieser ist die geometrische Summe Imotor= $\sqrt{(\text{Ia}^2+\text{Ib}^2)}$ der beiden Phasenströme Ia und Ib. Die einzelnen Phasenströme sind also um den Faktor $\sqrt{2}=1,4$ kleiner als der Motorstrom. Die Angabe des Motorstromes als Summenstrom ist hier angebracht, da die Phasenströme durch den Mikroschritt und der daraus resultierenden Drehmomentharmonisierung theoretisch jede Amplitude annehmen können, also von null bis maximalem Strom.

Stromeinstellung 3 Phasen Schrittmotor

Der Motorstrom wird mit dem HEX-Schalter eingestellt. Im Bild "Anordnung der Bedienelemente" auf Seite 2 ist die Stufung ersichtlich. Die Stromwerte in der Tabelle geben dabei den Spitzenstrom einer Motorphase an.

Der für das Drehmoment verantwortliche Gesamtstrom wird aus der Summe der drei um 120° versetzten Einzelströme gebildet.

Automatische Stromabsenkung

Im Betrieb mit Stillstandszeiten lohnt es sich, die automatische Stromabsenkung zu aktivieren. Dabei wird der Motorstrom auf ca. 60% des eingestellten Wertes abgesenkt. Die Verlustleistung im Motor sowie im Leistungsteil reduziert sich dabei entsprechend.

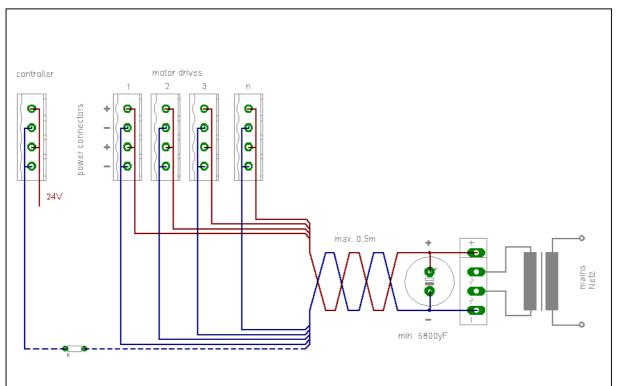
Stromabsenkung 0% auf 60% Verlustleistung 100% 36% Motormoment 100% 60%

! Stromabsenkung reduziert das Haltemoment. Es muss sichergestellt sein, dass dieses für die Applikation noch ausreichend ist.

Die Stromabsenkung wird aktiviert, wenn der Pulseingang länger als ca. 100ms unbestromt bleibt.

Die Stromabsenkung kann blockiert werden, wenn nach Ausführung des letzten Schrittes der Pulseingang bestromt bleibt.

Zum Bestromungsbeginn des Pulseinganges wird wieder der Nennstrom eingestellt. Die Dauer bis zum vollen Nennstrom ist abhängig von Motortyp, der Motorspannung und der Pulsdauer(wenn < 15ys)


Ab einem Motorstrom >7,5A muss die Stromabsenkung auf jeden Fall aktiviert sein

Temperaturüberwachung

Die Überwachung arbeitet in zwei Stufen. Ab ca. 60° wird die Lüfterautomatik aktiv. (Lüfter optionell) Dieser Umstand ist als Warnung zu deuten. Steigt die Temperatur weiter auf einen unerlaubt hohen Wert an, (> ca. 70°) schaltet sich das Leistungsteil ohne Meldung asynchron ab, der Motor wird stromlos. Dieser Zustand kann nur durch RESET oder Aus-Einschalten aufgehoben werden.

Ab einer Stromeinstellung größer 5A muss je nach Betriebsbedingungen auf jeden Fall Fremdbelüftet werden. Die einfache Luftkonvektion ist da nicht mehr ausreichend.

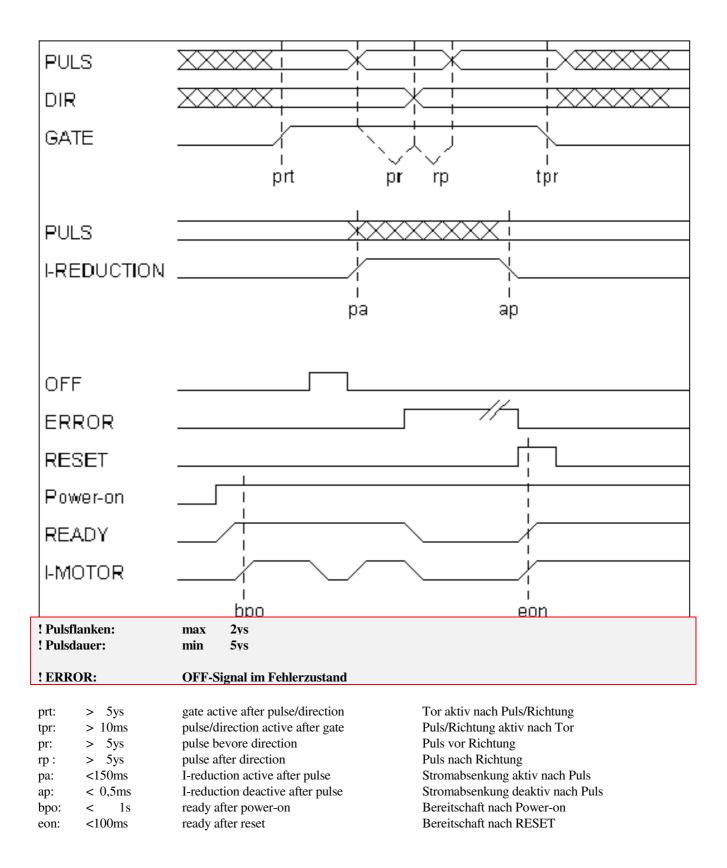
Versorgung

Um Störeinflüsse zu vermeiden, sind die Versorgungsleitungen bei längeren Distanzen (>0,3m) jeder einzelnen Karte im System getrennt zu verlegen und auf einen gemeinsamen Sternpunkt zu führen. Zur Verhinderung von statischen Aufladungen bei getrennter Versorgung von Steuereinheit und Leistungsteil muss ein hochohmiger Widerstand (> 100kOhm) zum Potentialausgleich eingebaut werden.

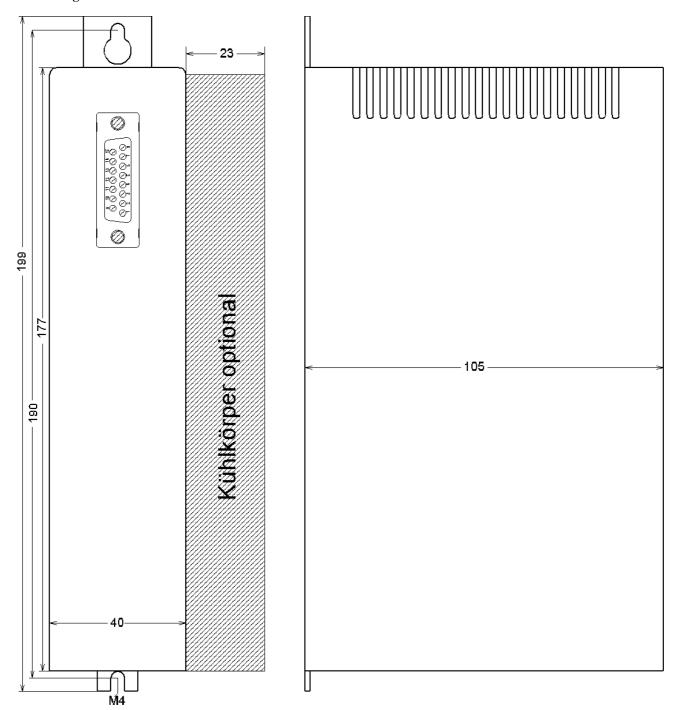
Stromversorgung

Es muss sichergestellt sein, dass das Netzteil einen ausreichenden Ladekondensator von mindestens 6800yF aufweist, damit beim Bremsvorgang durch die Rückspeisung der kinetischen Energie die Betriebsspannung nicht über die maximal erlaubte Versorgungsspannung ansteigt.

Zu hohe Motorspannungen können zur Zerstörung der Endstufe führen.


Eine bereits integrierte aktive Ballastschaltung verhindert im grenznahen Bereich Überspannungen in gewissen Grenzen. Jedoch ist bei hohem Motorstrom und großer zu treibender Trägheit ein entsprechendes Netzteil vorzusehen, das die maximal zulässige Betriebsspannung nicht übersteigen lässt.

Die Motorversorgung darf keinesfalls schlagartig auf die Endstufe geschaltet werden, da unter Umständen der Ladevorgang der internen Elkos die Sicherung ansprechen lässt. Die Funktion ist garantiert, wenn innerhalb einer viertel Netzperiode (5ms) die volle Betriebsspannung erreicht wird.


Niemals unter Spannung anklemmen, da sonst durch das plötzliche laden der Elkos die internen Sicherungselemente ansprechen können

!Auf Polung achten

Zeitverhalten, (Timing)

Abmessungen

Technische Daten

Versorgung: 80V 130V absolute max. Spannung: 85V 135V minimale Spannung: 24V 65V empfohlene Spannung Un: 72V 120V Spannungsrippel: < 2,0Vss Einschaltstrom: < 5.0AAbsicherung: 5,0Amt Netzteilelko: >6800yF Versorgungszuführung: $0.75 \, \text{mm}^2$ Distanz zum Netzteilelko <0,3m

Motoranschluß:

Kabelquerschnitt: $<4A > 0.75 \text{mm}^2$ $>4A > 1.00 \text{mm}^2$ Kabellänge: <10 m

Eingangsinterface: (24V Signalinterface)

Puls, Richtung, Tor, Off, Eilgang

 $\begin{array}{ccc} Eingangstyp: & Optokoppler \\ Eingangsspannung low: & <1V(6V) \\ & high & >3,5V(15V) \\ & nominal & 5V(24V) \\ & max. & 6V(28V) \\ Eingangswiderstand & ca.220(2k2)Ohm \end{array}$

Ausgangsinterface: Bereitschaft, Zerophase

Ausgangstyp: Optokoppler
Schaltspannung: <30V
Innenwiderstand: <15 Ohm
Schaltstrom: <50 mA
Last: ohmisch

Temperaturüberwachung:

Lüfterautomatik aktiv: ->ca. 60° Schutz-Abschaltung: > ca. 70°

Stromabsenkung, wirksam ab ca.Pulsfreqenz

Pulsbreite: 5ys 10ys 50ys 100ys Stromabsenk.: 50Hz 30Hz 20Hz 15Hz

Umgebungsbedingungen:

Betriebstemperaturbereich: 0...40°C Lagertemperaturbereich: -10...60°C Schutz: IP30

Verschmutzungsgrad: 2, keine Betauung

Gewicht: 0,5kg

EMV / Störunterdrückung:

Funkstörfeldstärke: EN55011B ESD: 4kV

Burst: IEC-Level 4 / 2,5kHz

Problemhilfen

Motor ohne Haltemoment, obwohl Spannung anliegt

- die Sicherung im Leistungsteil ist defekt

die Motorspannung liegt unter 24 Volt (bei 80V Karte)
 die Motorspannung liegt unter 60 Volt (bei 130V Karte)

- Eingang: OFF ist aktiv

rote LED leuchtet sofort nach dem Einschalten auf

- die Endstufe ist defekt

- der Motor hat einen Kurzschluss
- die Temperatur liegt noch über 70 Grad

plötzliche Knackgeräusche im Motor

- Unterpsannung an der Motorversorgung (<24Volt)
- zu niedriger Leiterquerschnitt im Versorgungskabel

Motor läuft an, kommt nicht auf die Enddrehzahl

- die Motorspannung ist zu gering
- zu hohe Beschleunigung oder Startfrequenz
- Drehmomentspitzen in der Fahrstrecke
- zu lange, zu dünne Motorleitungen

der Motor verliert einzelne Schritte und driftet weg

- Signalamplituden (Puls/Richtung) zu gering
- Störungen auf Signalleitungen
- mechanische Wellenkopplung hat Schlupf

der Motor vibriert bei Pulsfrequenz

- zu hohe Start/Stop-Frequenz
- Motorwicklungen falsch angeschlossen
- Motorkabelbruch
- niedere Schrittfrequenz bei Vollschritt ohne Last

der Motor wird sehr warm

- bis 85 Grad Celsius kein Problem

stark unterschiedliche Schrittwinkel im Mikroschritt

- der Motor hat zu große Wicklungsinduktivität
- der Motor wird weit unter dem Nennstrom betrieben
- der Motor wird über dem Nennstrom betrieben

Zirbelgeräusche in bestimmten Schrittpositionen

- zu hohe Motorspannung bei geringem Strom
- zu geringe Motorinduktivität

Signal TOR, ZERO ohne Wirkung

- die entsprechenden Brücken sind nicht gesteckt

Allgemeine Installationsanforderungen

Das Gehäuse ist generell separat zu erden. Dafür ist an der Frontplatte eine Erdungsschraube vorgesehen. Jede Komponente ist mit einem separaten Erdungskabel an einem zentralen "Erdungspunkt" anzuschließen. Meist ist dies das Maschinenbett oder eine Erdungsschiene im Schaltschrank.

Überprüfen Sie vor der Inbetriebnahme, ob die geforderte Leistung für Ihre Applikation ausreichend ist und dass angegebene Maximalwerte nicht überschritten werden.

Einbaulage senkrecht, Lüftereintritt und Lüftungsschlitze frei halten

Motorkabel sind generell in geschirmter Ausführung zu installieren. Bei gleichem Potential von Motorflansch und Steuerung (kurze Distanz) wird der Schirm beidseitig geerdet. Ansonsten wird nur eine einseitige Anbindung empfohlen in der Art, dass motorseits der Schirm über einen Kondensator galvanisch getrennt angebunden wird.

Generell darf der Potentialunterschied nur im Bereich von einigen wenigen mVolt liegen

Bei symmetrischen Motorleitungen wie beim 2-Phasen-Schrittmotor (Hin- und Rückleitung) werden verdrillte Adernpaare empfohlen.

Signalkabel sind ebenfalls zu schirmen. Bei Hin- und Rückleitung werden verdrillte Adernpaare empfohlen.

Signalkabel sind von Motorkabel getrennt zu verlegen. Lange parallele Führungen sind zu vermeiden, Kreuzungen möglichst senkrecht auszuführen.

Überprüfen Sie mögliche Einstellungen auf Richtigkeit.

Sicherheitshinweise / Schutzanforderungen

Die Installation des Produkts darf nur durch eine ausgebildete Fachkraft (Elektro) durchgeführt werden. Es sind die länderspezifischen Bestimmungen wie Unfallverhütung, Errichten von elektrischen und mechanischen Anlagen und Funkentstörung zu beachten.

Bei nicht sachgemäßen Betrieb des Produkts können Personen verletzt, das Produkt und weitere extern angeschlossene Komponenten beschädigt oder die Umwelt unzulässig belastet werden

Der Betrieb ist nur mit geschlossenem Gehäuse erlaubt. Das Produkt darf wegen evtl. noch vorhandener Hochspannung grundsätzlich nicht geöffnet werden, auch nicht nach längerem Stillstand. Stellen Sie sicher, dass Kinder keinen direkten Zugang haben.

Es dürfen keinerlei technische Veränderungen am Gerät vorgenommen werden.

Das Gehäuse ist generell und separat zu erden. Dafür ist extra eine Erdungsschraube an der Frontplatte vorgesehen. Die Erdung hat vor der Inbetriebnahme zu erfolgen.

Unter keinen Umständen dürfen Stecker unter Spannung oder Betriebszuständen abgezogen oder gesteckt werden. Alle Montagearbeiten haben spannungslos zu erfolgen.

Der Betrieb in feuchter oder Spritzwasser gefährdeter Umgebung ist nicht zulässig